PANDAS TUTORIALS

Manipulating Strings Exercise Answer Key

Answer Key

  1. unclean_listings = pd.read_pickle('unclean_listings.pkl')
  2. unclean_listings = unclean_listings[['header', 'price', 'mileage']]
  3. unclean_listings['header'] = unclean_listings['header'].str.upper()
  4. unclean_listings = unclean_listings[(unclean_listings['header'].str.startswith('201')) | (unclean_listings['header'].str.endswith('e'))]
    unclean_listings.reset_index(drop=True, inplace=True)
  5. unclean_listings = unclean_listings[unclean_listings['price'].str.contains('25')]
    unclean_listings.reset_index(drop=True, inplace=True)
  6. unclean_listings = unclean_listings[unclean_listings['header'].str.len() <= 20]
    unclean_listings.reset_index(drop=True, inplace=True)
  7. unclean_listings.columns = unclean_listings.columns.str.strip()
  8. unclean_listings['header'] = unclean_listings['header'].str.strip()
    unclean_listings['price'] = unclean_listings['price'].str.strip()
  9. unclean_listings['mileage'] = unclean_listings['mileage'].str.replace(' miles', '')
    unclean_listings['mileage'] = unclean_listings['mileage'].str.replace(',', '')
  10. unclean_listings[['first_split', 'price']] = unclean_listings['price'].str.split('$', n=1, expand=True)
  11. unclean_listings = unclean_listings[~unclean_listings['price'].str.contains('$')]
    unclean_listings.drop(['first_split'], axis=1, inplace=True)
  12. unclean_listings['price'] = unclean_listings['price'].str.replace(',', '')
  13. unclean_listings[['model_year', 'make', 'model']] = unclean_listings['header'].str.split(' ', n=2, expand=True)
    unclean_listings.drop(['header'], axis=1, inplace=True)
  14. unclean_listings = unclean_listings[['price', 'model_year', 'make', 'model', 'mileage']]